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ABSTRACT

Subseasonal forecast skill of the global hydrostatic atmospheric Flow-Following Icosahedral Model (FIM)

coupled to an icosahedral-grid version of theHybridCoordinateOceanModel (iHYCOM) is evaluated through

32-day predictions initialized weekly using a four-member time-lagged ensemble over the 16-yr period 1999–

2014. Systematic biases in forecasts by the coupled system, referred to as FIM–iHYCOM, are described in a

companion paper (Part I). This present study (Part II) assesses probabilistic and deterministic model skill for

predictions of surface temperature, precipitation, and 500-hPa geopotential height in different seasons at dif-

ferent lead times ranging from 1 to 4 weeks. The coupled model appears to have reasonable agreement with

reanalysis in terms of simulated weekly variability in sea surface temperatures, except in extratropical regions

because the oceanmodel cannot explicitly resolve eddies there. This study also describes the ability of themodel

to simulate midlatitude tropospheric blocking frequency, Madden–Julian oscillation patterns, and sudden

stratospheric warming events—all of which have been shown to be relevant on subseasonal time scales. The

metrics used here indicate that the subseasonal forecast skill of the model is comparable to that of several

operational models, including the National Oceanic and Atmospheric Administration’s (NOAA’s) operational

Climate Forecast System version 2 and the European Centre for Medium-Range Weather Forecasts model.

Therefore, FIM–iHYCOM—as a participant in NOAA’s Subseasonal Experiment—is expected to add value to

multimodel ensemble forecasts produced through this effort.

1. Introduction

Considerable effort is presently invested in providing and

improving subseasonal forecasts (;2 weeks to 2 months)

because of the importance of this time scale inmany sectors

of society (Brunet et al. 2010; WMO 2015; NAS 2016).

Several operational centers have been issuing subseasonal-

to-seasonal (S2S) forecasts for more than a decade (Vitart

2004; Saha et al. 2014; Kim et al. 2014; Lin et al. 2016;

Wheeler et al. 2017). Although subseasonal time scales fall

outside the theoretical deterministic predictability limit

of ;2 weeks in the midlatitudes (Lorenz 1969), there is

sufficient evidence that potential sources of subseasonal

predictability are seen in relatively long-lived flow config-

urations in the tropics (Charney and Shukla 1981), such as

the Madden–Julian oscillation (MJO; Waliser et al. 2003),

and tropospheric blocking atmidlatitudes (Matsueda 2011).

Major changes in the wintertime upper-stratospheric cir-

culation associated with sudden stratospheric warmings

(SSWs) likewise are being investigated as potential pre-

cursors of persistent tropospheric circulation anomalies at

high latitudes (Baldwin and Dunkerton 1999; Shaw and

Perlwitz 2013). In addition, capitalizing on relatively slow-

varying processes involving sea ice extent, soil moistureCorresponding author: Shan Sun, shan.sun@noaa.gov
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(Beljaars et al. 1996), snow cover (Walland and Simmonds

1996), and the ocean state has the potential for improving

S2S predictions. In particular, ocean heat content fluctua-

tions, especially when associated with El Niño–Southern
Oscillation (ENSO), have a long-lasting impact not only on

the tropics, but globally due to atmospheric teleconnections

(Hoerling and Kumar 2002).

Studies have also shown that ensemble-based proba-

bilistic prediction on the S2S time scale can exhibit skill

relative to forecasts based on persistence (e.g., Palmer

2002; Zhu et al. 2014; Smith et al. 2015; Lin et al. 2016).

There has been widespread and still-increasing use of

ensemble forecasting to improve forecast skill at all time

scales. Two approaches for generating an ensemble

prediction system based on dynamical forecast models

have been used:

1) Use of a single model ensemble whose members are

diversified by perturbed or lagged initial conditions.

Some such systems also include stochastic perturba-

tions of model physics (e.g., Kalnay and Dalcher

1987; Palmer and Tibaldi 1988; Straus and Shukla

2000; Vitart 2014).

2) Use of several models in a multimodel ensemble

(e.g., Krishnamurti et al. 2003; Palmer et al. 2004;

Kirtman et al. 2014; Li and Robertson 2015; Vigaud

et al. 2017).

This pragmatic shift to probabilistic forecasting to

reflect the inherently chaotic nature of atmospheric be-

havior has effectively improved skill in the subseasonal-

to-interannual prediction range. At these time scales,

multimodel ensemble forecasts have been found to be

better than those based on any one singlemodel, as shown

in, for example, the Development of a European Multi-

model Ensemble System for Seasonal to Interannual

Prediction (DEMETER; Palmer et al. 2004) and North

AmericanMultimodel Ensemble (NMME; Kirtman et al.

2014). Nevertheless, forecasts are still susceptible to errors

from deficiencies in the treatment of spatially unresolved

physical processes and finite-difference approximations in

the model equations. To maximize the gain from ensem-

ble methods, approach 2 above requires that attention be

paid to model diversity in order to assure sufficient spread

among ensemble members and not just reduction in

overall bias. This makesmodels with diverse subgrid-scale

physical parameterizations and innovative numerics at-

tractive in multimodel ensembles.

Nevertheless, continuing development of individual

models still appears to offer the best chance for im-

proving subseasonal prediction, mainly by improving

representation of the Earth system processes listed

above. The goals of this article are to evaluate the sub-

seasonal forecast skill of a new coupled model—the

atmospheric Flow-Following Icosahedral Model (FIM;

Bleck et al. 2015) coupled to an icosahedral grid version

of the Hybrid Coordinate Ocean Model (iHYCOM; cf.

Bleck 2002)—in a multiyear set of 32-day hindcasts,

with emphasis on seasonal and geographic skill varia-

tions. Given that the coupled model, referred to here as

FIM–iHYCOM, has been described in detail in Sun

et al. (2018, hereafter Part I), we concentrate in section 2

of the present article (Part II) on the details of themodel

climatology and bias removal. Weekly variability of sea

surface temperature (SST) between reanalysis and

FIM–iHYCOM is also compared. Skill measures in

predicting a number of relevant variables and phe-

nomena are presented in section 3, followed by a dis-

cussion in section 4.

2. Model climatology and SST variability

a. Model climatology and bias removal

As discussed in Part I, FIM–iHYCOM hindcasts were

carried out over a 16-yr period initialized weekly with

four time-lagged ensemble members for a total of

835 weeks, yielding 3340 simulations. The model output

is interpolated onto a 18 3 18 horizontal grid and aver-

aged to either daily or weekly means for various lead

times, depending on different applications shown later.

To increase the sample size for a model climatology,

FIM–iHYCOMwas also initialized daily at 0000UTC from

1 January 1999 through 31 December 2014,1 a total of

5844 simulations. For the purpose of bias correction, at

each latitude–longitude point and for each lead day in-

dependently, the resulting hindcasts were first averaged

over the number of available years (i.e., 4 years for

29 February and 16 years for the remaining 365 days). This

yielded averaged fields, henceforth referred to as ‘‘raw

model climatology,’’ with dimensions 366 (initialization

days of the year)3 32 (forecast lead days)3 1813 360

(latitude–longitude points). Then, for each lead day at

each latitude–longitude point, 10 passes of a 25-day

low-pass numerical filter, described in the appendix,

were applied across the 366-day dimension. The

number of filter passes was chosen empirically to

balance noise removal necessitated by limited sam-

pling and retention of physical signals.

The resulting lead-dependent dailymodel climatology

is used to perform bias correction before assessing skill

in most of the results presented below, with the follow-

ing exception: the results from probabilistic forecasts do

1Note that there is some overlap, namely, 0000 UTC every

Wednesday, between this hindcast and the abovementioned four-

member time-lagged ensemble initialized weekly.
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not employ the bias correction method described above

because, as noted in section 3a, model bias is accounted

for implicitly.

For the purpose of bias-correcting subseasonal fore-

casts from NOAA’s Climate Forecast System (CFS)

version 2 (CFSv2; Saha et al. 2014), climatologies for

CFS Reanalysis (CFSR; Saha et al. 2010) and for lead-

dependent CFSv2, calculated following Zhang and van

den Dool (2012), were downloaded from the National

Centers for Environmental Information (NCEI). Note

that CFS climatology is calculated over the period 1982–

2010 due to data/computational constraints. It should be

noted that Saha et al. (2014, p. 2199) recommend using a

‘‘split climatology’’ based upon data from 1999 onward

for both precipitation and SST in the tropical Pacific;

however, this is not a concern here because none of our

precipitation results include data equatorward of 208N.

Figure 1 shows one example of how the low-pass

filter (red curve) removes sampling noise from the raw

FIM–iHYCOMmodel climatology (green curve) of 2-m

temperature (T2m) at a particular geographic location

at a lead time of 1 day. These climatologies can also be

compared with the corresponding CFSR climatology

(black curve); this curve is noticeably smoother than the

FIM–iHYCOM-filtered climatology. The difference

between the red and black curves represents the bias

correction that is applied to FIM–iHYCOM hindcasts.

b. SST variability in FIM–iHYCOM

Model overview articles, especially those dealing with

subseasonal or longer time scales, often go beyond an

assessment of systematic biases and examine the ability

of the model to reproduce observed temporal variability

(e.g., Pegion and Kirtman 2008; Saha et al. 2014). Typ-

ically, such variability analyses are from multiyear

model integrations that are then filtered to isolate the

desired time scale. Because such a long integration of

FIM–iHYCOM does not yet exist, the previously de-

scribed 16-yr hindcast dataset, along with the filtered

model climatology, is used. To calculate variability in

FIM–iHYCOM, the general approach of Saha et al.

(2014; their Fig. 3) is followed: we compute anomalies

with respect to model climatology and then compute the

variability of these anomaly fields.

Because the focus of Part I and Part II is on subseasonal

prediction, variability was computed from weekly data

using the following procedure. First, the filtered lead-

dependent model climatology was removed from each of

the four ensemble members to give daily model anoma-

lies. Then, for each ensemble member separately, the

daily anomalies were averaged over weeklong periods to

obtain weekly model anomalies. Next, for a given target

season [e.g., December–February (DJF); see Part I for

details on ‘‘target’’ season)] and a given forecast leadweek

(1–4) for each ensemble member separately, the variance

of the weekly model anomalies was calculated. As an

example for DJF, there are;12 weeks per season and 14

DJF seasons, so ;168 cases for each lead week were in-

cluded in the variance calculation of each of the four en-

semble members. Finally, for plotting purposes, the mean

of the four ensemble member variances was taken.

The resulting SST variances for FIM–iHYCOM were

compared with SST variances from CFSR. The meth-

odology to compute weekly variances from CFSR is

similar to that described above, except that there are no

ensembles and no dependence on forecast lead time.

Instead, CFSR variances were simply computed based

on the 1999–2014 period for those Wednesday–Tuesday

weeks whose midweek day (Saturday) fell in the desired

target season.

Figure 2 shows, for DJF, the CFSR weekly SST

variance along with the difference in variance between

FIM–iHYCOM (‘‘FIMr1.1,’’ as in Part I) and CFSR for

forecast lead weeks 1–4. Looking at Fig. 2a and ig-

noring sea ice areas (e.g., north of Japan and in Hudson

Bay), the areas with the largest weekly SST variability

are in (i) extratropical boundary and gyre-scale drift

currents, such as the Gulf Stream and Kuroshio ex-

tensions; (ii) the Antarctic Circumpolar Current; and

(iii) the central and eastern equatorial Pacific Ocean.

For FIM–iHYCOM lead week 1 (Fig. 2b), the largest

differences between simulated and observed SST vari-

ability are in the strong current regions just mentioned.

The reduced SST variability in these regions is a con-

sequence of iHYCOM’s grid spacing of ;60 km, too

coarse to adequately simulate eddying and meandering

in extratropical current systems. (Even when observed

FIG. 1. T2m climatology at 408N, 908W for FIM–iHYCOM for

day 1 lead time. Green curve: raw climatology (simple average over

the 16-yr period); red curve: smoothed climatology after 10 passes

of 25-day filter. CFSR climatology provided by NCEI is shown for

comparison (black curve).
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SST is sampled at coarse resolution, as is done in CFSR,

the effects of meandering and eddying on the larger-

scale ocean state are still captured to some extent.) The

reduced SST variability in these regions (blue shading)

appears to be nearly identical between weeks 3 and 4

(Figs. 2d,e). More interesting, though, is that by week 4,

FIM–iHYCOMhas higher SST variability than CFSR in

the equatorial central Pacific, as well as in the equatorial

Indian Ocean. An investigation of the potential impact

of increased SST variability in FIM–iHYCOM (relative

to CFSR, which may serve as a proxy for observed

conditions) in the Indian Ocean on the MJO is beyond

the scope of the present article. Overall, given that

iHYCOM in its present configuration cannot resolve

extratropical eddies, the coupled model appears to be

effective in representing weekly SST variability.

3. Skill of subseasonal hindcasts from
FIM–iHYCOM and CFSv2

Buizza and Leutbecher (2015) confirm the forecast

skill of time-averaged fields of temperature, wind, and

geopotential height to be significantly higher than that

of time-averaged scores of instantaneous fields. (In their

case, instantaneous fields had lower skill than 2-day-

averaged fields, which had lower skill than 8-day-aver-

aged fields.) Zhu et al. (2014) evaluate model forecast

skill by linking the averaging time window to the lead

time as an approach to seamless verification across dif-

ferent time scales. In this section, we have opted to

measure forecast skill based on weekly averages of

model results (except in section 3c, in which daily data

are used) on a 18318 horizontal grid. Recall from Part I

that the native resolution of FIM–iHYCOM is ;60 km,

while that of CFSv2 is ;100 km.

a. Probabilistic skill of T2m and precipitation

In the NOAA-facilitated multimodel Subseasonal

Experiment (SubX; NOAA 2017), each model was re-

quired to contribute at least four ensemble members. As

stated earlier, FIM–iHYCOM uses four time-lagged

members; CFSv2 currently has 16 members per day (as

of 1 April 2011), but its hindcasts have only four mem-

bers per day (cf. Part I).

With only four ensemble members, traditional ‘‘count-

ing’’ methods to construct probabilistic forecasts (e.g.,

how many of the ensemble members exceed a certain

threshold X) are of limited use. Fortunately, extended lo-

gistic regression [ELR; seeWilks (2009) for further details]

can be used to construct a continuous range (bounded by

[0, 1]) of forecast probabilities. This techniquewas adopted

by Vigaud et al. (2017) to use the ensemble mean forecast

(and observed climatological terciles) as input into anELR

to create probabilistic forecasts of weekly precipitation on

subseasonal time scales. Vigaud et al. (2017) used ELR-

based probabilistic forecasts to look at both ranked

FIG. 2. (a) Variance of weekly averaged SST (K2) for target season DJF from CFSR. (b)–(e) FIM–iHYCOM

variance minus CFSR variance for lead weeks 1–4, respectively.
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probability skill score (RPSS) and reliability diagrams for

three S2S prediction systems, including the European

Centre for Medium-RangeWeather Forecasts (ECMWF)

Ensemble Prediction System (EPS) and CFSv2. We eval-

uate FIM–iHYCOM’s probabilistic skill for weekly aver-

aged T2m and also for weekly accumulated precipitation.

To do this, we follow a very similar methodology as that

used by Vigaud et al. (2017). In short, this involves evalu-

ating weekly forecasts initialized in either January–March

(JFM) or July–September (JAS) over the period 1999–

2010: this period was chosen in order to facilitate a direct

comparison with Vigaud et al. (2017). FIM–iHYCOM

results are compared with those from CFSv2 in Figs. 3–6.

Moreover, the reanalyses used to build the ELR were

CFSR for T2m and the Global Precipitation Climatology

Project (GPCP; Huffman et al. 2001) for precipitation.We

chose GPCP because (i) it incorporates both satellite

measurements and ground observations and (ii) it was

used by Vigaud et al. (2017) in their ELR.

It should be noted that bias correction in the man-

ner used throughout much of this article was not

employed for probabilistic forecasts; that is, the raw

ensemble mean forecasts were used as input to the

ELR. But by relating biased forecasts to reanalyses,

the training of the regression model implicitly ac-

counts for model bias. Given the fact that Vigaud et al.

(2017) did not appear to apply bias correction a priori

to the ensemble mean forecasts, we did not test the

impact of a priori bias correction on the training of

the ELR and the resultant ELR-computed forecast

probabilities.

In this section, we compare the ability of FIM–iHYCOM

and CFSv2 to predict below-normal, near-normal, and

above-normal conditions for T2m and precipitation.

1) RPSS

TheRPSS is onemetric to assess probabilistic skill. As

described by Wilks (2006, 299–302)—note that ‘‘SSRPS’’

FIG. 3. RPSS for T2m forecasts, verified against CFSR, initialized in (top two rows) JFM and (bottom two rows) JAS for (rows 1 and 3)

FIM–iHYCOM and (rows 2 and 4) CFSv2 over a region encompassing the conterminous United States. Lead weeks 1–4 are shown from

left to right.
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in his Eq. (7.49) is the same as RPSS—RPSS is useful for

probabilistic forecasts of multicategory (three or more)

events (e.g., below-, near-, or above-average temperature

and precipitation). Positive values of RPSS indicate fore-

casts better than a climatological prediction (in this case,

assigning a 1/3 probability to each of the three categories).

Figure 3 shows RPSS from FIM–iHYCOM and CFSv2

forecasts of T2m for JFM starts, as well as for JAS starts.

Looking at JFM (top two rows of Fig. 3), bothmodels have

similar spatial distributions of RPSS for all four forecast

lead weeks, but FIM–iHYCOM has more areas of non-

negative RPSS than CFSv2 for weeks 3 and 4. For JAS

starts (bottom two rows of Fig. 3), again, FIM–iHYCOM

has higher RPSS values than CFSv2 for weeks 3 and 4.

These results suggest that FIM–iHYCOM provides better

probabilistic forecasts than CFSv2 of T2m at subseasonal

time scales over the United States.

Figure 4 follows Fig. 3, respectively, but for forecasts

of precipitation. RPSS for precipitation decreases much

faster as a function of lead week than T2m, and the skill

of FIM–iHYCOM is comparable to that of CFSv2. The

much higher precipitation RPSS for CFSv2 week 1 in

Fig. 4—compared with Figs. 5 and 6 of Vigaud et al.

(2017)—is a consequence of the different days used to

define week 1 [days 1–7 here; days 2–8 in Vigaud et al.

(2017)]. By weeks 3 and 4, neither FIM–iHYCOM nor

CFSv2 exhibits any cohesive areas of positive RPSS

outside the tropics. Overall, the results are comparable

to those shown in Figs. 5–6 of Vigaud et al. (2017) for the

ECMWF EPS.

2) RELIABILITY DIAGRAMS

Reliability diagrams (e.g., Wilks 2006) provide a useful

visualization of a model’s probabilistic performance

because they show the probability of observing an event

(or of a variable exceeding a certain threshold), given a

forecast probability of that same event (in our case,

obtained from the ELR). On a reliability diagram, a

perfect probabilistic forecasting system will have all

points falling on the straight line y 5 x.

FIG. 4. As in Fig. 3, but for precipitation forecasts verified against GPCP. Note that the color bar matches that in Figs. 5 and 6 of Vigaud

et al. (2017).
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Figure 5 shows reliability diagrams (but without the

distribution of forecast probabilities) for below-, near-,

and above-normal T2m for FIM–iHYCOM forecasts

initialized in JFM, for all North American land points

between 208 and 508N [following Figs. 3a–c of Vigaud

et al. (2017)]. In week 1, T2m forecasts are all slightly

underconfident (Wilks 2006, 288–289) but are over-

confident by week 4. Not surprisingly, the near-normal

category is the hardest to predict (e.g., van denDool and

Toth 1991; Kharin and Zwiers 2003): after the first

2 weeks, there is no resolution—regardless of forecast

probability, observed frequency is near 1/3. For the be-

low- and above-normal T2m categories, however, there

is more reliability and resolution through week 3. In

week 4, the curves show losses in reliability and resolu-

tion, and the forecast probabilities (not shown) are

concentrated on 1/3. For all three categories, as lead

time increases, the forecasts become less sharp (a

smaller range of forecast probabilities is issued, and

there is a tendency to forecast climatology). Overall, we

find that FIM–iHYCOM can contribute to real-time

prediction of T2m through at least 3 weeks of lead time.

Figure 6 is very similar to the top row of Fig. 3 in

Vigaud et al. (2017). Here, reliability diagrams for pre-

cipitation based on FIM–iHYCOM forecasts initialized

in JFM are shown aggregated over the same area as in

Fig. 5. The slopes of the lines in these reliability dia-

grams all indicate an overconfident forecast by week 2.

Consistent with the RPSS results shown earlier, pre-

cipitation is more difficult to forecast than T2m. Again,

the near-normal category is hardest to predict: after the

first week, there is no resolution. For the below- and

above-normal precipitation categories, however, there

is some reliability and resolution through week 2; in

weeks 3 and 4, there is no resolution, and the forecast

probabilities (not shown) are concentrated on 1/3.

b. Deterministic verification of selected fields

1) ANOMALY CORRELATION COEFFICIENTS

Numerous variations on the theme of deterministic

forecast skill assessment have appeared in the literature

over the years. In the field of subseasonal prediction in

particular, a ‘‘best’’ measure has yet to emerge. One

commonly used skill metric for subseasonal verification

so far (e.g., Saha et al. 2014; Zhu et al. 2014; Li and

Robertson 2015; Lin et al. 2016) is the anomaly corre-

lation coefficient (ACC), which we adopt here to

quantify the skill of deterministic predictions.

We define weekly intervals the same way as in Part I

(cf. Fig. 1 of that article), namely, days 1–7, 8–14, 15–21,

and 22–28 for weeks 1 to 4, respectively. When we

categorize target weeks by month, the day in the middle

of the target week determines the target month (see

section 2b of Part I for a detailed description).

The ACC is calculated from

ACC5
�
K

k51
�
N

i51

ðf
i,k
2F

i
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Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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i,k
2F
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Þ2�

K
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�
N
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ða
i,k
2A

i
Þ2

s . (1)

Here, N extends over all data points spanning the

desired range of latitudes and longitudes; K spans

all hindcasts available. The fi,k are the ensemble-

averaged model forecasts, and ai,k are the correspond-

ing (re)analysis values, both weighted by the cosine of

latitude to account for meridian convergence in the

FIG. 5. Reliability diagrams for T2m forecasts (verified against CFSR) from FIM–iHYCOM, restricted to North American land points

between 208 and 508N and initialized in JFM. Lead weeks 1–4 are shown in different colors. Left to right: below-normal, near-normal, and

above-normal categories.
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latitude–longitude grid; Fi, Ai are the forecast and (re)

analysis climatologies at each latitude–longitude grid

point i.

We verify ensemble mean forecasts of T2m and

500-hPa geopotential height (H500) against CFSR.

Precipitation is verified against GPCP during the

period of 1999 to 2014.

Figure 7 shows the geographic distributions of the

ACC over North America for forecasts of T2m from

both FIM–iHYCOM and CFSv2. As in Part I, and in

section 2b here, the results are composited based on

target season: 14 for DJF and 16 for JJA. There are 196

cases in DJF and 224 cases in JJA, which implies that an

ACC value of ;0.1 is statistically significantly greater

than zero (at the 95% confidence level) based on a

Student’s t test. There is clearly a substantial contrast in

T2m skill between ocean and land (T2m over the ocean

is strongly influenced by slowly evolving sea surface

temperatures), which is why Figs. 9 and 11 (see below)

only consider land points for T2m. Despite an overall

rapid decrease in T2m ACC over land after week 2,

there is some statistically significant skill in the south-

eastern United States beyond week 2. For a given target

season (DJF or JJA), FIM–iHYCOM has comparable

ACCs with CFSv2. Over land, DJF generally has higher

ACCs than JJA for a given lead week; the opposite is the

case for points over water. The last row of Fig. 7 shows

the ACCs of 2-week (14 day) forecasts for weeks 3 and 4

combined. This is along the line of seamless verification

in which the temporal averaging window increases as

lead time increases (e.g., Zhu et al. 2014). There are

regions in which the ACCs of the combined weeks 3–4

forecasts of T2m are higher (although not necessarily

statistically significantly higher) than the ACCs of the

week 3 forecast. This lends further support to the notion

that for subseasonal prediction, useful information

could be extracted from a combined weeks 3–4 forecast

that might not be evident when considering weeks 3 and

4 separately.

The skill of precipitation is generally quite low beyond

week 1 (e.g., Zhu et al. 2014; Li and Robertson 2015).

Recent studies have shown that forecast skill at weeks 3

and 4 may be higher than previously thought, via use of

more sophisticated data analysis techniques (DelSole

et al. 2017) and/or by targeting periods with known

sources of predictability (Vigaud et al. 2017). Figure 8

follows Fig. 7, but for precipitation. AlthoughACCs drop

rapidly after week 1, there is some skill along the West

Coast of the United States at weeks 2 and 3, especially in

DJF. As with T2m, for precipitation there are some areas

(mainly in the subtropics) in which the combined weeks

3–4 ACCs (bottom row of Fig. 8) are higher than the

week 3 ACCs. Overall, FIM–iHYCOM and CFSv2

have similar precipitation ACCs, despite the fact that they

employ very different convective parameterizations

[modified Grell and Freitas (2014) for FIM–iHYCOM;

Simplified Arakawa–Schubert (e.g., Han and Pan 2011)

forCFSv2]. In general, theACCs frombothFIM–iHYCOM

and CFSv2 are comparable to the Predictive Ocean–

Atmosphere Model for Australia (POAMA; cf. Zhu

et al. 2014; Wheeler et al. 2017) and CFSv2 and EPS

in Li and Robertson (2015).

Figure 9 compares the ACCs at different lead times of

weekly averages in DJF and JJA for T2m (aggregating

all land points in the Northern Hemisphere), as well as

for precipitation and H500 (both aggregated over all

points from 208 to 808N), from both FIM–iHYCOM and

CFSv2. In addition to weekly averages, the 2-week av-

erage of weeks 3 and 4 is shown. The ACCs from both

models are very similar and, not surprisingly, decrease

with increasing lead time. Aggregated ACCs remain

above zero through 4 weeks and are mostly higher in

FIG. 6. As in Fig. 5, but for precipitation forecasts verified against GPCP.
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DJF than in JJA. Consistent with Figs. 7 and 8, the ACCs

of the combinedweeks 3–4 average forecast is close to that

of the week 3 ACCs and higher than the week 4 ACCs.

Figure 10 shows the geographic distributions of H500

ACCs for both FIM–iHYCOM and CFSv2, similar to

Figs. 7 and 8. Consistent with Fig. 9, H500ACCs through

week 3 are higher in DJF than in JJA. Also consistent

with Fig. 9 is the fact that FIM–iHYCOM and CFSv2

have very similar Northern Hemisphere ACC magni-

tudes. A higher level of skill is seen in the North Pacific

for all lead weeks in both models, especially in DJF.

In summary, the ACCs of T2m, precipitation, and

H500 in FIM–iHYCOM are comparable to those from

CFSv2. They are also comparable to those found in other

subseasonal prediction systems, including the Canadian

Global Ensemble Prediction System (GEPS) shown by

Lin et al. (2016) when evaluated using the definitions of

weekly averages and target months in their study (not

shown), although the spatial patterns differ. These skills

are, in general, higher in the winter season than in sum-

mer, as found in other studies (e.g., Kirtman et al. 2014;

Zhu et al. 2014; Lin et al. 2016; DelSole et al. 2017),

possibly due to the relative dominance in winter of well-

resolved synoptic-scale processes such as baroclinic in-

stability, as opposed to mesoscale and convection-scale

processes that are poorly resolved and represented.

FIG. 7. Maps of T2m ACCs for (left two columns) DJF and (right two columns) JJA from (columns 1 and 3) FIM–iHYCOM and

(columns 2 and 4) CFSv2 at lead times of (top four rows) 1–4 weeks. (bottom) ACCs as computed from the average of weeks 3 and 4.

Values of ACC $ ;0.1 are significantly different from zero (at 95% confidence).
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2) SPREAD–ERROR RELATIONSHIP

Two other metrics commonly used to assess model

skill are root-mean-square error (RMSE) and ensemble

spread. In ensemble prediction, it is important that the

RMSEof the ensemblemean is of comparablemagnitude

to the ensemble spread of the field in question, as they

are, for example, in Fig. 1 of Fortin et al. (2014). In gen-

eral, an ensemble spread that is substantially smaller than

(greater than) the RMSE of the ensemblemean indicates

an ensemble that is underdispersive (overdispersive). In

either case, the ensemble probability distribution poorly

represents the true probability distribution; the interested

reader is referred to the statistically based discussion of

Fortin et al. (2014). We calculated the spread using the

right-hand side of Eq. (15) of Fortin et al. (2014), repro-

duced here for convenience:

RMSE’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R1 1

R

�
1

T
�
T

t51

s2t

s
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R1 1

R

�s
ðs2t Þ1/2 . (2)

Here, R is the ensemble size (4 for the case of

FIM–iHYCOM), T is the number of cases (hindcast

weeks for FIM–iHYCOM), and s2t is the ensemble vari-

ance for case (week) t. The term under the radical symbol

on the far right-hand side of (2) accounts for ensemble size

(without this, spreadwould be less than error simply due to

the small number of ensemble members). The results are

shown inFig. 11 forT2m, precipitation, andH500 (all three

FIG. 8. As in Fig. 7, but for precipitation.
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fields composited over the same regions used for Fig. 9)

as a function of lead time for both FIM–iHYCOM and

CFSv2. Overall, the two models are comparable in terms

of their RMSE and spread. For T2m andH500, themodels

are underdispersive (spread , RMSE) even after ac-

counting for the small ensemble size; however, for pre-

cipitation, CFSv2 (and, to a lesser extent, FIM–iHYCOM)

have some instances in which spread exceeds error, likely

owing to the highly non-Gaussian nature of precipitation.

The underdispersive (overconfident) nature of the T2m

results in Fig. 11a is consistent with the shape of the re-

liability diagrams (Fig. 5) for weeks 3 and 4.

c. Prediction of various subseasonally relevant
phenomena

1) BLOCKING FREQUENCY

Many extreme weather events, such as heat waves and

flooding, are found to be associated with episodes during

which the normal midlatitude zonal flow is temporarily

blocked by a meridionally aligned cyclone–anticyclone

couplet often referred to as a modon (Flierl et al. 1980).

Early studies (e.g., Miyakoda et al. 1983) have suggested

that there is some predictability for blocking at lead

times up to 1 month; more recent work (e.g., Matsueda

2011) has shown examples of blocking impacting

weather on multiweek time scales. Thus, it is important

to examine a model’s ability to simulate blocking at

subseasonal time scales. Furthermore, reproducing re-

alistic blocking frequency is considered to be necessary,

though not sufficient, for skillful forecasts of blocking. In

light of the many shapes and forms of midlatitude

blocks, which a single blocking index may not be able to

account for satisfactorily, we document their frequency

and geographic distribution by relying on two different

blocking indices.

The first index is the widely used Tibaldi and Molteni

(1990) blocking frequency index (TM index hereafter),

FIG. 9. ACCs for FIM–iHYCOM (blue) and CFSv2 (red) forecasts as a function of forecast lead week (1–4)

for target seasons (left) DJF and (right) JJA. (a),(b) T2m over land points in the Northern Hemisphere.

(c),(d) Precipitation between 208 and 808N. (e),(f) H500 between 208 and 808N. Dashed lines show the ACCs

computed from the average of weeks 3 and 4.
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FIG. 10. As in Figs. 7 and 8, but for H500.
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which is essentially based on the reversal of the merid-

ional gradient of H500 at midlatitudes. In addition to

identifying so-called ‘‘instantaneous’’ blocks (which, in

this case, are blocks identified by the TM index for a

single day of the daily averaged H500 field), the original

TM index definition also has an option to add a longevity

threshold to blocking identification. Including a tem-

poral threshold (for this article, a minimum of 4 days)

means only persistent blocks are identified. The chal-

lenge to the forecast model is not merely to predict

blocking events per se, but to predict the long-lived ones

correctly, as the latter often lead to extreme weather.

The second blocking index, developed by Pelly and

Hoskins (2003; PH index hereafter), is arguably a

more physical alternative to the TM index. It is based

on a reversal of the meridional potential temperature

gradient on a tropopause-level potential vorticity

(PV) isosurface within a latitude range centered on

the longitude-dependent mean storm track. The latter

refinement gives the PH index some advantage over the

TM index, whose meridional search interval is indepen-

dent of longitude. The PH index emphasizes temperature

gradient reversals near the tropopause—that is, at the

edge of the stratospheric surf zone (McIntyre and Palmer

1984)—compared to those evident in themidtroposphere

detected by the TM Index.

Figure 12 shows the blocking frequency from

FIM–iHYCOM and CFSv2 at selected forecast lead

times from days 7 to 28. It is based on the full 16-yr

forecast period (no seasonal restriction) of the weekly

initialized four-member ensembles, where eachmember

is treated as an independent forecast—no ensemble

means are considered. The solid curves in all panels are

based on the TM index. No temporal threshold is used in

Figs. 12a and 12b, whereas a 4-day temporal threshold to

capture blocking ‘‘episodes’’ is used in Figs. 12c and 12d.

FIG. 11. As in Fig. 9, but for RMSE (solid) and spread (dashed). Units of RMSE and spread for T2m, pre-

cipitation, and H500 are K, mmday21, and gpm, respectively. The geographic areas over which RMSE and spread

are computed match those of Fig. 9.
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Because of the noisy nature of the derived blocking

frequency, which is unavoidable given the limited sam-

ple size, all curves are longitudinally smoothed using 15

passes of the nine-point low-pass filter described in

the appendix. (This number of passes was found to

remove wave components of roughly 208 of longitude
and shorter.) As a proxy for observed conditions, the

blocking frequencies from each model’s initial condi-

tions (day 0) are also shown in the top panel.2

From the perspective of the TM index, FIM–iHYCOM

and CFSv2 show similar blocking frequency at all lead

weeks—specifically, a frequent Euro–Atlantic block

and a weaker Pacific block. The slight decline in blocking

frequency with lead time seen in the FIM–iHYCOM re-

sults appears to be related to excessive deepening of

troughs over the high-latitude ocean basins (not shown),

which has the effect of lowering the probability of H500

gradient reversals. This declining trend is largely removed

by the bias correction, as shown in the gray curves. Given

the fact that different time periods are used here, it is not

surprising that the blocking frequency shown in Figs. 12a

and 12b differs from Jung et al. (2012) for the ECMWF

model and Hamill and Kiladis (2014) for the NOAA

GEFS model, both also being based on the TM index.

Applying the 4-day duration filter lowers the TM block-

ing frequency by about 30%, as shown in Figs. 12c

and 12d.

The dashed lines in Fig. 12c show the frequency of

4-day blocking episodes in FIM–iHYCOM as measured

by the PH index. As discussed by Pelly and Hoskins

(2003), the southward displacement of the storm tracks

over the western and central Pacific limits the ability of

many blocks identified by the TM index to actually in-

terfere with the westerly flow in that region. The PH in-

dex corrects for that and, in the process, shifts the Pacific

blocking maximum eastward relative to the one gener-

ated by the TM index. This shift, a definite improvement

from the synoptic meteorology perspective, is quite no-

ticeable in Fig. 12c. Our results confirm the finding of

Pelly and Hoskins (2003) that their tropopause-based

index captures more blocking events than does the TM

index, especially over Europe.

FIG. 12. Northern Hemisphere blocking frequency as a function of longitude from 16 years (1999–2014) of en-

semble forecasts (each member treated as an independent sample) for lead times of 7, 14, 21, and 28 days. (a) Solid

lines: TM index extracted from weekly sampled four-member FIM–iHYCOM hindcasts with no temporal

threshold. Gray lines: TM index based on bias-correctedH500; colored lines: TM index based onH500 without bias

correction. (b) As in (a), but for CFSv2. (c),(d) As in (a),(b), but with a temporal threshold of 4 days. PH index

(dashed lines) added in (c). ‘‘Lead Day 0’’ (initial conditions) added in (a),(b) as proxy for reanalysis.

2 Recall from Part I that the initial conditions for both

FIM–iHYCOM and CFSv2 come from CFSR; thus, the small

differences in the black curves in Fig. 12 (between the two models)

are a consequence of interpolating to the FIM–iHYCOM native

icosahedral grid before all data are interpolated to 18 3 18.
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Because of the use of an isentropic vertical coordinate

(including a prognostic equation for layer thickness, the de-

nominator in the PV expression) the PV field generated by

FIM contains details not resolved in models employing a

conventional fixed vertical grid. For this reason, we refrain

from comparing PH-index-based blocking statistics between

FIM–iHYCOM and CFSv2, focusing instead on a compar-

ison of the two blocking indices in FIM–iHYCOMforecasts.

2) MADDEN–JULIAN OSCILLATION

As discussed in Part I, the Madden–Julian oscillation

is seen as important for subseasonal time scales because

it is responsible for most of the 30–90-day tropical vari-

ability (Zhang 2005) and impacts the entire Earth system

(Zhang 2013); therefore, a good representation of the

MJO in FIM–iHYCOM is necessary, but not sufficient, to

provide reasonably skillful subseasonal forecasts. Green

et al. (2017) provide a detailed analysis of the overall

ability of an earlier version of FIM–iHYCOM to simulate

two different MJO indices (and the corresponding

input fields). The key differences between the hindcasts

in Green et al. (2017) and those shown here are detailed

in section 2a of Part I.

Figure 13 compares the CFSv2 results [over the period

1999–2010, as in Green et al. (2017)] with the full 16-yr

FIM–iHYCOM hindcast period3 in terms of ability to

predict a variant of the Real-time Multivariate MJO

(RMM) index (cf. Wheeler and Hendon 2004; Green

et al. 2017) and a similar variant of the Velocity Poten-

tial MJO (VPM) index (cf. Ventrice et al. 2013; Green

et al. 2017). Both indices require daily (i.e., not weekly)

data. Figure 13 follows the methodology of Green et al.

(2017), with one major exception: in Green et al. (2017),

reanalysis climatology was used, whereas here, model

climatologies (for both FIM–iHYCOM and CFSv2)

were used (i.e., bias correction described in section 2a

above was applied). It should be noted here that the

verifications for RMM and VPM shown in Fig. 13 are

FIG. 13. Model performance as a function of lead time for FIM–iHYCOM (blue) and CFSv2 (red) ensemble

mean forecasts of the (left) RMM index and (right) VPM index [as in Green et al. (2017)]. (top) Bivariate cor-

relation (gray line 5 0.5). (bottom) Bivariate RMSE (solid; gray line 5
ffiffiffi
2

p
) and four-member ensemble spread

(dashed).

3 The impact of including FIM–iHYCOMhindcasts from 2011 to

2014 is deemed negligible (not shown).
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based on the NCEP–NCAR reanalysis (Kalnay et al.

1996) rather than CFSR. The present hindcast configu-

ration of FIM–iHYCOM exhibits RMM skill [often

defined as exceeding a threshold of 0.5 for the bivariate

correlation; e.g., Rashid et al. (2011)] out to ;19 days,

essentially the same as that of the CFSv2 hindcast

(Fig. 13); VPM skill is;16 days for FIM–iHYCOM and

;18 days for CFSv2. The RMM skill of CFSv2 is con-

sistent with what is shown inWang et al. (2014). Overall,

the performance of the present hindcast in terms of

RMM and VPM is comparable to the results shown

in Green et al. (2017) for their earlier version of

FIM–iHYCOM, not just for bivariate correlation, but

also for RMSE (both models are comparable; note also

that RMSE ,
ffiffiffi
2

p
represents errors less than those of a

climatological forecast) and spread (both models are un-

derdispersive). One notable exception is that the current

FIM–iHYCOM hindcast for RMM performs better (but

not necessarily statistically significantly so) than that used

by Green et al. (2017) in terms of both higher correlations

and lower RMSEs during the first ;8 days; interestingly,

this cannot be explained by the inclusion of bias correction

in the present hindcast (not shown).

3) SUDDEN STRATOSPHERIC WARMING

Upward propagation of zonal wavenumber-1 or -2

planetary waves into the upper polar stratosphere—which

typically occurs during periods of weak high-latitude

stratospheric westerlies (Charney and Drazin 1961;

Dickinson 1968; Schoeberl 1978), but on rare occasions,

also takes place at times when the polar vortex is fully

developed—is the generally accepted cause of occa-

sional wintertime circulation changes in the upper

stratosphere and mesosphere. Accompanied by very

large temperature anomalies (Scherhag 1952), which are

attributed to adiabatic compression in descending air

near where a low-latitude, low-PV streamer gains

ground against the high-PV polar vortex, these events

have historically been referred to as sudden strato-

spheric warmings. The commonly used criterion for so-

called major warmings is that the zonally averaged 10-

hPa zonal wind at 608N (u60) changes from westerly to

easterly (e.g., Tripathi et al. 2016), a result of the in-

trusion of low-PV air into the polar region.

There is evidence (e.g., Shaw and Perlwitz 2013) that

an SSW, while initiated by a vertically propagating

planetary wave, renders the upper stratosphere more

reflective to subsequent upward-propagating waves,

thereby possibly affecting the tropospheric circulation in

the days following the warming. Hence, SSWs are

deemed relevant for subseasonal prediction.

We quantitatively assess SSW prediction skill in terms

of the ACC [defined as (1) above] of predicted u60 for

various lead times. Results from FIM–iHYCOM simu-

lations initialized in the months October–March during

the 16-yr hindcast period are shown in Fig. 14. The

model skill is comparable to the ECMWF EPS forecast

skill shown for the year 2011 in Fig. 10 of Vitart (2014),

which is added in Fig. 14 for easier comparison.

Other models (Fig. 4 in Tripathi et al. 2016) show skill

in predicting SSW for a key case in January 2013 up to

15 days in advance. Figure 15 illustrates the occurrence

and predictive skill of SSW for two representative boreal

winters (2008/09 and 2012/13) in FIM–iHYCOM simu-

lations in terms of the maximum temperature on the

10-hPa surface (Tmax) inside the polar cap north of 608N,

as well as u60. The axes in the diagrams are model ini-

tialization time and forecast lead time (0–32 days). Lines

of equal forecast verification time (dot–dashed in the

figure) slope from upper left to lower right. To arrive at

coherent contour plots despite the large data gap

(1 week) on the abscissa, additional data points were

created by linear interpolation in the oblique direction

marked by the dot–dashed lines. Successfully predicted

SSWevents are depicted in this reference frame by u60 and

Tmax isopleths that are aligned with the dot–dashed lines.

Figure 15 shows that FIM–iHYCOM succeeds

in predicting the SSWs in the 2 selected years up to

3 weeks in advance. However, the gradual loss of

‘‘slope’’ of the u60 isopleths illustrates a general ten-

dency of FIM–iHYCOM to be late in predicting flow

reversal at lead times beyond 10 days.

4. Discussion

The main goal of this study is to validate the new

FIM–iHYCOM coupled model and generate a baseline

for a systematic assessment of prediction skill with a

FIG. 14. ACCs of u60 predictions from FIM–iHYCOM for

months October–March in years 1999/2000 to 2013/14, plotted

against forecast lead time (days). Circles showACC values for 2011

reproduced from Fig. 10 of Vitart (2014).
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focus on subseasonal time scales, as an attempt to bridge

the skill gap between weather forecasting and seasonal

prediction. This is the second of two articles on sub-

seasonal prediction with the new coupled modeling

system, focusing on the model’s probabilistic and de-

terministic prediction skill. Part I provided a detailed

description of the coupled model, along with an evalu-

ation of systematic seasonal biases.

A comprehensive hindcast dataset at 60-km horizon-

tal resolution was constructed by running a four-

member time-lagged ensemble on a weekly basis for

the 16-yr period 1999–2014. The main focus is on

the verification of 2-m temperature, precipitation, and

500-hPa geopotential height, but we also attempt to shed

light on the coupled model’s ability to predict specific

processes deemed relevant for longer-range prediction:

namely, blocking, the Madden–Julian oscillation, and

sudden stratospheric warming events. There is also a

cursory comparison between model-simulated variabil-

ity and that of observations. In subject areas where we

are able to compare FIM–iHYCOM to CFSv2 (and

other models), we find that the skill is comparable.

We analyzed weekly mean forecasts on a 18 3 18
horizontal grid after removing biases extracted from the

model’s own climatology, except in the case of proba-

bilistic skill, where model bias is accounted for implic-

itly. Despite the existing model biases shown in Part I,

the competitive probabilistic and deterministic skills of

FIM–iHYCOM for T2m, precipitation, and H500, as

well as the ability of the model to simulate various

phenomena (blocking, the MJO, and SSWs), appear to

be similar to those of the operational models of

CFSv2, EPS, GEPS, and POAMA mentioned earlier.

In addition, we compared the blocking frequency

simulated by FIM–iHYCOM using two different in-

dices and confirmed that the PH index is meteorolog-

ically more relevant than the TM index, at least for the

Pacific blocks.

Our work is based on only four ensemblemembers, and

no stochastic forcing is applied during model integration.

Despite these limitations, FIM–iHYCOM shows promis-

ing skill in many aspects of the metrics used here and

suggests a likely positive contribution to NOAA’s multi-

model Subseasonal Experiment (SubX).

Because of the nonstandard spatial discretization of

the model equations on the sphere and in the vertical

direction, and the inclusion of a different scale-aware

convection scheme [namely, a variant of Grell and

Freitas (2014)], the primary purpose of FIM–iHYCOM

will be to enrich genetic diversity in multimodel en-

sembles that are increasingly being used in predicting

atmospheric circulation anomalies and associated

weather phenomena on time scales beyond 2 weeks. To

become a candidate for inclusion in multimodel en-

sembles, an individual model must be demonstrated to

be state-of-the-art in terms of its ability to simulate

atmospheric flow patterns and weather regime transi-

tions relevant to subseasonal weather prediction; this is

the primary goal of this article.

In our future work, we will use FIM–iHYCOM, as

well as coupled models based on NOAA’s Next Gen-

eration Global Prediction System (NGGPS), to conduct

FIG. 15. Illustration of FIM–iHYCOM predictions for boreal winters (left) 2008/09 and (right) 2012/13. (top)

Maximum 10-hPa temperature in polar cap north of 608N (8C), and (bottom) u60 (m s21). Abscissa: model ini-

tialization time. Ordinate: forecast lead time (0–32 days). Slanted dot–dashed lines are lines of equal model

verification time.
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more detailed, process-based studies of some of the

subseasonally relevant phenomena that were given brief

attention in this article. We will also investigate sub-

seasonal as well as longer-term phenomena not yet

covered in this article, such as tropical cyclone fre-

quency, the stratospheric quasi-biennial oscillation, and

El Niño–Southern Oscillation.

The dataset generated during this study has been made

available to the research community through NOAA’s

SubX project. Combined with other existing subseasonal

datasets, SubX offers the potential to improve our un-

derstanding of the mechanisms that are crucial for sub-

seasonal prediction. The multimodel dataset also serves

as a benchmark against which future coupled models will

be compared, including models incorporating NGGPS,

which is based on finite-volume numerics on a cubed-

sphere grid (e.g., Putman and Lin 2007).
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APPENDIX

Low-Pass Filter Details

A description of the procedure for generating a

model-specific climatology would not be complete

without documentation of the method used for elimi-

nating short-term fluctuations from the raw model out-

put. Here, we provide details of the low-pass filters

employed in this work.

We use filters developed by Fleck and Fryer (1953)

that offer advantages over both the use of running aver-

ages (which suffer from serious ‘‘ringing’’ throughout the

frequency range) and the use of a finite number of Fourier

components (which tends to suppress seasonal peaks).

Fleck–Fryer filters have flawless damping characteristics at

wavenumbers outside the low-passwindow, a consequence

of setting to zero as many derivatives as possible of the

filter transfer function at the high-wavenumber end. The

number of derivatives that can be specified increases with

the number of filter weights.

TABLE A1. Filter weights (starting with the central weight and

progressing outward) of the symmetric 25-point temporal and nine-

point spatial filters discussed in the appendix.

Point (from center) 25-point filter 9-point filter

1 1.611 802 578 3 1021 2.734 375 0 3 1021

2 1.487 817 764 3 1021 2.187 500 0 3 1021

3 1.168 999 672 3 1021 1.093 750 0 3 1021

4 7.793 331 146 3 1022 3.125 000 0 3 1022

5 4.383 748 770 3 1022 3.906 250 0 3 1023

6 2.062 940 598 3 1022

7 8.022 546 768 3 1023

8 2.533 435 822 3 1023

9 6.333 589 554 3 1024

10 1.206 398 010 3 1024

11 1.645 088 196 3 1025

12 1.430 511 475 3 1026

13 5.960 464 478 3 1028

FIG. A1. Transfer functions for two low-pass filters used in this study. Red curves show the effect of applying the

original filter (shown in blue) multiple times, as indicated. Abscissa: wavenumber in units of inverse data intervals.
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Starting with the center weight, the 13 independent

weights for the 25-point time filter used in generating the

model climatology are listed in the middle column of

Table A1. (Note that filters must be symmetric with

respect to the center weight to avoid phase shifts in the

processed data.) The five independent weights of the

nine-point longitudinal filter used in processing blocking

statistics are listed in the right column of Table A1. The

resulting transfer functions for these two filters used

here are shown in Fig. A1.
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